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Random Graphs as a Model for Pregeometry 

F r a n k  A n t o n s e n  1 

Received November 10, 1993 

A toy model for pregeometry based on random graphs is proposed, and it is 
shown how it is related to other models in the literature. A prediction of the 
dimensionality of space is given and we obtain bounds on the Euler number. 

1. INTRODUCTION 

Gravitation is one of the major problems of modern theoretical 
physics. Ever since Einstein achieved a marriage of Newtonian gravity and 
special relativity we have possessed a beautiful theory, the general theory of 
relativity. This theory is based on a geometric interpretation of gravity: the 
curvature of space-time is caused by gravitation and vice versa, as described 
by the field equations equating the curvature (in the form of the Einstein 
tensor) to the energy-momentum tensor (Misner et al., 1973). Unfortu- 
nately, the model is based on a coupling constant with dimension m-2, so 
a further marriage with quantum theory is impossible: general relativity is 
not renormalizable. We find ourselves in the embarrassing position of 
having two excellent theories together explaining more or less everything 
from very small length scales (subnuclear) to extremely large ones (super- 
galactic), but which are incompatible. This has led to suggestions that 
gravity should not be quantized but remain classical. Such an approach 
must be considered most unaesthetic. Proposals have also been made 
deriving gravity from other forces, an approach going back to Sakharov, as 
an effective field theory holding at "large" distances. This approach is also 
known as pregeometry but differs from the philosophy we want to bring 
forward (Terazawa, 1991; Akama and Oda, 1991; Floreanini and Percaci, 
1990). 
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If quantum field theory and general relativity are incompatible, then a 
possible way out would be to find extensions of one or the other (or both). 
An example of such a philosophy is superstring theory, in which the usual 
pointlike particles are replaced by one-dimensional objects, strings. Simi- 
larly, extensions of general relativity have been proposed. Einstein himself 
was working on such an extension when he died, although he was not 
motivated by the marriage of gravity and quantum theory, but the mar- 
riage of the two classical forces, gravity and electromagnetism. Very early 
proposals were put forward uniting these two by extending the dimension- 
ality of space-time: Kaluza-Klein theory. Whether one likes or dislikes 
these attempts is a matter of taste (Gegenberg et al., 1988; Jackiw, 1985). 

Einsteinian gravity is based on differential geometry, and all gauge 
interactions can be cast into such a geometrical form by using vector 
bundles. It thus seems that geometry, from a classical point of view, is an 
extremely fruitful and deep concept. But what do we need in order to 
specify this setup? First of all we need (pseudo-) Riemannian geometry, i.e., 
a set locally diffeomorphic to open subsets of Minkowski space, so we 
need: 

1. A set (the manifold). 
2. A differentiable structure (the diffeomorphisms). 
3. Minkowski geometry (the tangent space). 
4. An affine structure (essential for the equivalence principle). 

To this list one could add (a) a symplectic structure (necessary if we want 
Hamiltonian and/or Lagrangean dynamics) and (b) fiber bundles (to 
include the matter and Yang-Mills fields). 

Clearly general relativity is rather "high level," in the sense that it does 
not work with primitive objects at all. Yang-Mills theory is even higher in 
that it requires a vector-bundle structure with a Lie algebra as fiber 
(G6ckeler and Schiicker, 1989). This suggests that a deeper theory could be 
arrived at by going to more primitive objects. The most primitive objects 
and the corresponding theories are: 

1. Propositions; logic. 
2. Categories and sets; abstract set theory. 
3. Relations and compositions; algebra and topology. 

When we note that many problems in quantum mechanics can be remedied 
when we discretize space-time (lattice regularization), we see that a funda- 
mental quantum theory should be formulated in discrete terms (Lee, 1986). 
Discretized versions of general relativity, simplicial gravity, for instance, 
have been proposed over the years (e.g., most recently the matrix models), 
and sometimes this approach is also known as pregeometry. In general the 
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word "pregeometry"  is used in the following sense: 

Pregeometry (Lit. "before geometry"). A model in which Einstein's 
theory of  gravity, or some extension of it, is derived as a limiting case, even 
though geometrical notions were absent originally. Whether this is done 
using topological, algebraic, or set-theoretic models and/or by considering 
the graviton as a composite object is immaterial. Eventually one would 
hope to derive gravity from pure mathematical logic. 

Here we have also written down the ultimate goal: a formulation in terms 
of  pure mathematical logic. This idea goes back to Wheeler. Various 
approaches to quantum gravity based on cellular automata, quantum 
logics, or similar structures proposed within the last 20 years or so ( ' t  
Hooft,  1990; Zapatrin, 1993; Finkelstein, 1969; Brightwell and Gregory, 
1991; Bombelli et al., 1987), naturally fall within this category, even though 
the authors might not have thought of them as being "pregeometric." We 
will now propose a model. 

2. SETTING UP THE M O D E L  

To set up a physical model we must ask ourselves many questions, the 
first one being: What are the basic quantities? The fundamental geometric 
concept must be that of  a point. 2 This is also the point of view taken in 
almost all models; from models based on differential geometry (Gegenberg 
et al., 1988; Jackiw, 1985), quantum norm theory (Isham, 1990; Isham et 
al., 1990) or metric spaces (Alvarez et al., 1988; Alvarez, 1988), to models 
based on causal sets ( ' t  Hooft,  1990; Zapatrin, 1993; Finkelstein, 1969; 
Brightwell and Gregory, 1991; Bombelli et al., 1987). We will take the point 
to be one of the basic quantities of our model. Now, in quantum theory we 
introduce operators to create and annihilate the quantities basic to the 
model at hand. Thus we will define point creation and annihilation 
operators a, a t. Furthermore, a correlation, or interaction, is needed to get 
some structure; the fundamental concept must be that of linking points. We 
will only allow single bonds between two points, and we will not allow a 
point to link to itself (this is not really a great loss of generality, since any 
other kind of graph can be spanned by one of the kinds we consider). Links 
will be taken as our second set of  basic quantities, and we will define 
corresponding "second quantization" operators b, b*. Thus the fundamen- 
tal object is a graph (Berge, 1973; Bollob~s, 1985). 

2Actually, as we will see later, we can recast the model in a form where the points have 
disappeared. For pedagogical reasons, however, it is useful to formulate this model this 
way. 
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A given set of  points and links will be called a universe, and we can 
describe it by two quantities: 

1. The number v of points. (The order of the graph.) 
2. A topological matrix A describing the links. 

This topological matrix will have the property that 

A; j=f0I  (Pi, Pj) not linked 
(pi, pj) linked (1) 

k -  

where pg denotes the ith point (given some completely arbitrary labeling). 
The other rules which we will specify are: 

1. When deleting a point we also automatically delete all of its links. 
2. This being so, we choose always to delete the point with the lowest 

degree, i.e., number of links going out from it. When more points 
have the same minimal degree we choose one of  them at random. 

3. Avoid the "inhumane" situation of deleting the entire universe just 
by attempting to create a point or link that was already there or to 
delete one that was not. We forbid the application of  a to the empty 
graph, b to the graph without links, and b* to the simplex. 

Any universe can be characterized by the two integers v, 2; however, 
this characterization is not unique, and to obtain uniqueness we need a 
label keeping track of  the degenerate graphs, thus 

10> = ] v, 2, x> (2) 

The last parameter x depends on an arbitrary enumeration of graphs with 
a given pair of values for v, 2. It is restricted by 

Similarly, 2, the number of links, is restricted by 

( ; )  1 
0 < 2 <- A =- =~v(v  - 1) (4) 

The quantities we have referred to as "points" are purely abstract entities; 
they should not be thought of  as zero-dimensional objects imbedded in a 
given (Euclidean or Minkowskian) space-time. A point is just a member of  
a countable set. Similarly, a "link" is nothing but a pair of points; it is not 
a line segment, arc, nor piece of  a geodesic. Actually, the entire model can 
be expressed solely in terms of  N, the set of  natural numbers; "God  created 
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the natural numbers, the rest is the work of man" as Kronecker said. Since 
a link is a pair of  points, a graph can be represented in an abstract way by 
a pair G = (V, E), where V ___ N is the set of points and E ~ V x V is the 
set of  links. Of  course E has to satisfy certain restraints. 

It should be noted, however, that the notion of  a point floating around 
in splendid isolation is somewhat metaphysical; such an object would not 
be observable. 

Denote the space of all possible universes, graphs, by F. An appropri- 
ate name for this is metaspace. Consider a sequence {1~,)},~1 from F, 
where I is some index set, I _~ N. We will say that this sequence is an 
evolution if 

Vn~I3~,e{a,a*,b, bt}: 10,+ ~) = cr 10,)  (5) 

i.e., if each universe can be obtained from the one before it by the addition 
or removal of  a point or a link. With the concept of evolution comes 
another, that of time, which is simply the index n (assuming I =  
{ 1, 2 . . . .  , N}). Since our model is discrete, this definition of  time is unique. 

We can summarize the basic philosophy of the model so far as follows: 

1. Space is built up from fundamental objects (points and links). 
2. Time is a parametrization of  an evolution of spaces. 

Probably the most important concept in physics is energy, especially 
the Hamiltonian function. We can view this function from two angles: it is 
the time-development operator (the generator of  translations in time) and 
it is also the energy of  the system. While the first notion is dynamical, the 
latter is intrinsically static. A special case is the Hamiltonian for a static 
state. Here we write down the energy of a single state, i.e., not an 
evolution. Later we will consider dynamics further. 

For  our Hamiltonian we want, of  course, a topological invariant. A 
canonical invariant for a 2-dimensional surface is the Euler number Z. For 
a graph we can also use this definition. Hence we write 

H =  Ho + H, + E H(p2) + ~ H(p~)q +" " " (6) 
p>-3 p,q 

where Ho denotes the energy of the points, H L that of  the links, and /4 (2) **p 

has to do with the number of  2-dimensional objects, i.e., polygons, with p 
sides; similarly, /4(33 deals with the number of  polytopes built up from p- - - p q  

and q-gons. We assume the terms to be essentially just the number of 
objects with the indicated dimensionality, i.e., H0 oc v, etc. 

Since the topological matrix has the property that A,.j = 1 if and only 
if the points i , j  are linked, it follows that (A 2)ij = ~ At~Akj must equal the 
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number of paths of length two going between points i,j. In general 

(Ak);j = I{paths between points i , j  of length k}l (7) 

In other words, the ith diagonal element of A k gives the number of k-gons 
containing the point i. Hence we put 

H(p2~ = ~.v Tr A p (8) 

where c~p is some constant. For p > 3 this gives us the number of p-gons. 
The trace of A 2 also has a simple interpretation. A closed path of length 
two must consist in going along one link and then return along the same 
link. Clearly (A 2)i i = d~, where di denotes the degree of the point, i.e., the 
number of links going out from it. Hence 

Tr A 2 = ~ d i = 22 (9) 
i = l  

since every link connects exactly two points. We thus see that also H1 can 
be written as the trace of some power of A, namely H1 = ~ 1 T r A  2. For 
simplicity we restrict our attention to d-simplices. For the two-dimensional 
case the Hamiltonian then is 

1 1 
H = ~0v + cq ~ Tr A 2 + ~2 ~. Tr A 3 (10) 

This already has the form familiar from the study of matrix models (Bessis 
et al., 1985; Bilal, 1990). Let me just restrict myself to mentioning that by 
introducing length and orientation of the links we get a matrix model 
proper; ! refer to Antonsen (1992a), in which a comparison with the 
quantum metric spaces introduced by Alvarez (1988) is also made. Higher 
dimensions can be included by noting that three points (labeled i,j, k) lie 
on a triangle if and only if 

Bijk - A~jAj~Aik = 1 (no summation) (11) 

The number of simplices is then given by 

45 • Bij~Bjk'Bij'Bi~t =- Tr' B 4 (12) 
i jkl  

In general the number of d-simplices is given by the 'trace' of the (d + 1)th 
power of a d-tensor, where the trace is understood as a sum over indices so 
as to be equivalent to a sum over common ( d -  1)-simplices (Antonsen, 
1992a; Froggat and Nielsen, 1991; Nielsen, 1984). Hence, all in all we have 
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~3 H = C~oV + -f~ Tr(Aij)2 + ~7..~! Tr(AiJ) 3 + 4.1 Tr(Bijk)4 + ' "  " 

= ~ O~d 
a = 0 ~ T r  T~ (13) 

where Ta denotes the appropriate tensor (To = 6ij, T~ = T2 = Aij, 7"3 = Bijk, 
etc.). A similar generalization of the matrix models to d = 3 has been 
proposed by Ambjorn et al. (1991). Let me emphasize that the similarity 
with the matrix models does not serve as a justification of the model - - i t  
merely puts the former into a larger framework. Dynamics could be 
included by adding extra terms in the action coming from the possibility of 
deleting points and links, thereby changing the topology and even the 
dimensionality. These extra terms could be written symbolically as 
A ( ~  a + ~2a* + fl3b q- fl4bt)A', where A, A' are different topological ma- 
trices. Such terms are of course absent in the much simpler matrix models. 

Pregeometric models based on simplicial complexes has been studied 
by Lehto et al. (1986, 1987, 1989). See Antonsen (1992b) for further 
comments on their connection with our own pregeometric model. Once 
again I would like to stress that the dimension in our model is a dynamical 
concept: there is no fixed "background dimension," and in fact the very 
value of the dimensionality will necessarily undergo changes as the topolog- 
ical structure of the graph is changed by the operators a, a t, b, b*. The next 
section will show the result of some simulations. 

3. S O M E  R E S U L T S  

The fundamental parameters of the model are three probabilities, 
namely 

1. The probability Pl of creating a point. 
2. The probability P2 of deleting a point. 
3. The probability P3 of creating a link. 

The probability P4 of deleting a link is then just P4 = 1 - P l  - P 2  -P3- 
The task is to input values for these parameters and then at each timestep 
choose one operation at random with the given probability. For each of the 
resulting states we then calculate the number of points v, links A and 
d-simplices o- a for d = 2, 3, 4 (actually v = r o, 2 = al ,  so we find ad for 
d < 4). The restriction to simplices and not arbitrary cells (cubes, or, in 
general, polytopes) is due to limitation of resources (basically CPU time 
limits); it should not, however, be of great importance. 

Using statistics, we are now going to derive formulas for the distribu- 
tion of simplices of various dimensions in a given random graph; this can 
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be used to derive a formula for the expectation value of the Euler number 
in terms of v, 2 as well as giving some idea about the dimensionality. Let 
(trp) be the expected number of p-simplices; then, per definition, the 
expected value of the Euler-Poincar6 characteristic is 

( • ) =  ~ (-1)P(ap) (14) 
p=o 

Now, clearly, ( a 0 ) =  v and ( a l ) =  )~, so the result for the two lowest 
dimensions is known; we now want to find the expectation values for 
higher dimensionality. A d-simplex consists of d + 1 points and �89 + 1) 
links; thus the probability is 

Pr(d-simplex) = (15) 

On purely statistical grounds, then, the expected number of d-cells #a is 
given by 

#a=Pr(d-simplex)(d(~)l)=((2)~d(d+~/2(d(V+)l)\-~-f.] (16) 

where, of course, ( A ) = l ( v ) ( ( v ) -  1). The task is then to compute this 
number for some values of d (d - 4) and to compare the result with the 
actual number of d-simplices found in the simulated universes. Table I 
shows this. Only d = 2, 3, 4 are considered. Table II shows the same 
information, but this time we only average over the events in which we 
actually had nonzero values for v, 2. Taken together the two tables give us 
an idea of the dimensionality of such a random graph, and how our model 
differs from a pure random graph theory. We note that while for some 
values of the parameters there seems to be good agreement between the 
"theoretical" estimates #d and the "empirical" ones (ad), for most of the 
range Pd is considerably lower than (trd) by a factor of 2 or 3 for d = 2, 
whereas for d > 2 the agreement is in general much worse; the expected 
value is often an order of magnitude below the one obtained numerically. 
But also notice that/~d was a rather simple-minded statistical guess. I take 
this disagreement as an indication of a bias inherent in our model, 
probably due to the rule of always deleting the point with the lowest 

Table I. The Resulting Dimension upon Application of Operators a 

Operator a a* b b* 
Effect d,d-I d,d+l d,d-1 d,d+I 

ad denotes the value of the dimensionality before the graph is 
operated on. 
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Table II. A Comparison of the Number of d-Cells from Statistical and Numerical Work 

Pl P2 P3 ]A2 (0"2) ]23 (0"3) f14 (0"4) 

1/4 1/4 1/4 0.056 0.001 0.000 0.000 0.000 0,000 
1/3 4.818 4.830 0.663 2.350 0.208 0.670 
2/5 1.870 9.520 0.131 4.795 0.002 1.400 

1/3 I/4 0.325 1.870 0.007 0.725 0.000 0.120 
1/3 1.796 5.480 0.161 1.770 0.003 0.210 
2/5 13.792 27.265 4.246 24.940 0.524 14.115 

2/5 1/4 0.054 0.120 0.000 0.000 0.000 0.000 
1/3 4.797 8.605 0.863 3.800 0.051 0.675 

1/3 1/4 1/4 0.267 0.385 0.001 0.000 0.000 0.000 
I/3 2.951 9.865 0.156 5.085 0.002 1.635 
2/5 13.343 30.605 3.179 25.675 0.274 12.740 

1/3 1/4 1.872 5.910 0.100 2.205 0.001 0.310 
1/3 8.043 18.665 1.444 13.985 0.087 6.795 

2/5 1/4 3.104 8.685 0.275 3.855 0.007 0.700 
2/5 1/4 1/4 1.072 1.550 0.008 0.000 0.000 0.000 

1/3 4.121 9.650 0.070 0.720 0.000 0.000 
1/3 1/4 3.909 11.425 0.101 1.515 0.000 0.000 

degree; this bias tends to create a richer structure than a purely random 
graph would have. 

The concept of dimensionality for a graph is somewhat problematic; 
there is no accepted canonical definition. We have in fact (at least) two 
concepts of dimensionality, namely din,x, deer. The first is given by the 
dimension of the largest p-simplex, whereas the other deals with the 
distribution of cells: 

dmax = max{dl(aa > -> 0} 

deer= max{d[(o-a) >- (v)/2} 

Both definitions are scale-dependent; what could look like a d-dimensional 
space on one scale could look like a space of  any other dimension on 
another scale. Note also the effect the basic operations a, b, a*, b* can have 
on the dimensionality; if before application the graph has dimension d, 
then after having applied either a or b on it we can have dimension d or 
d - 1, while the creation operators a*, b* gives d or d + 1. 

Again using our simulations we can now predict the dimensionality of 
space-time as well as its Euler-Poincar~ characteristic. In Table III we 
show the predicted values for the different kinds of dimensionalities. We 
denote by ~max, fiefr the estimates based on #a. The choice in the definition 
of deft is, of  course, arbitrary, but it is, I believe, nonetheless reasonable; it 
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Table III. A Comparison of the Number of d-Cells from Statistical and Numerical Work" 

Pl P2 P3 #2 (a2) '  /t~ (a3) '  #~ (a4) '  

1/4 1/4 1/4 0.097 1.000 0.000 0.000 0.000 0.000 
1/3 5.112 7.263 0.749 6.620 0.035 2.978 
2/5 2.121 10.519 0.169 5.675 0.003 3.373 

1/3 1/4 0.502 6.032 0.016 3.816 0.000 1.000 
1/3 1.908 6.123 0.182 2.392 0.004 1.024 
2/5 14.644 29.962 4.787 28.022 0.640 15.949 

2/5 1/4 0.101 1.091 0.000 0.000 0.000 0.000 
1/3 5.097 9.456 0.947 4.270 0.063 1.063 

1/3 1/4 1/4 0.399 1.540 0.002 0.000 0.000 0.000 
1/3 3.184 11.210 0.181 7.423 0.002 4.360 
2/5 14.397 33.266 3.701 27.848 0.352 18.071 

1/3 1/4 2.083 6.832 0.124 2.609 0.002 1.000 
1/3 8.416 19.342 1.581 14.957 0.101 9.503 

2/5 1/4 3.508 9.869 0.352 4.645 0.010 1.022 
2/5 1/4 1/4 1.193 2.488 0.009 0.000 0.000 0.000 

1/3 4.586 11.488 0.087 1.000 0.000 0.000 
1/3 1/4 4.559 13.601 0.137 1.993 0.001 0.000 

~Only averages over the nonzero values are used. 

amounts to demanding that an observer, no matter where the observation 
is made, is predicted to find a dimensionality d with odds at least fifty- 
fifty. Table IV then shows the expected values of the Euler-Poincar~ 
characteristics. 

The maximal dimensionalities should be taken with a grain of salt; for 
one thing there might have been only a single d-simplex in the entire 
evolution to give dmax = d, and also only d < 4 were counted. They just 
show the range inside which the dimension can be expected to vary. We 
have 

37 
(d~n-) = i-7 ~ 2.1 

4 2  
( d ; ~ )  = ~ 5  ~ 2 . s  

22 
(6,er) = ~ ~ 1.2 

26~  

but we also see that d'eer = 3 has the highest probability ( though it is almost 
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Table IV. The Estimated Values of the Dimensionalities 

1199 

Pl P2 P3 dmax dmax 6max ~max def t d ~  6~g fi~g 

1/4 1/4 1/4 2 2 2 2 0 0 0 1 
1/3 4 4 4 4 2 3 2 2 
2/5 4 4 4 4 3 4 1 2 

1/3 1/4 4 4 3 3 1 3 1 1 
1/3 4 4 4 4 2 2 1 2 
2/5 4 4 4 4 4 4 3 3 

2/5 1/4 2 2 2 2 1 1 1 I 
1/3 4 4 4 4 3 3 2 2 

1/3 1/4 1/4 2 2 3 2 1 1 1 1 
1/3 4 4 4 4 3 3 I I 
2/5 4 4 4 4 4 4 2 2 

1/3 1/4 4 4 4 4 2 2 1 1 
1/3 4 4 4 4 4 4 2 2 

2/5 1/4 4 4 4 4 3 3 1 2 
2/5 1/4 1/4 2 2 3 3 1 1 I 1 

1/3 3 3 3 3 1 2 1 1 
I/3 1/4 3 3 3 3 2 2 1 1 

equiprobable with d~fr = 2 or 4). Remembering that d~fr = 4 really means 
d~fr >-4, we see that a prediction of the effective dimensionality of  the 
universe (i.e., of  the spatial part of space-time) of a value close to 3 is 
reasonable. 

From the number of simplices of various dimensionality we can also 
construct the Euler-Poincar6 characteristic. Let Xu denote the estimate 
based on #j,  i.e., 

= ( - 1 ) %  
d = 0  

and let (X)  denote the average found in the actual simulations. We denote 
the quantities calculated from nonzero values only by primes as usual. The 
result is shown in Table V. Here the discrepancy between the naive statistical 
estimate and the numerical simulation is even more pronounced; most of the 
estimated values lie close to zero or - 1, whereas most of the numerical ones 
are positive and somewhere in the range 2 -5 .  Again we see that our model 
has a bias toward more structure than a purely random graph. 

3.1. Asymptotic Behavior 

It is clearly also of interest to find the asymptotic behavior of  the 
(effective) dimension and the other global topological characteristic, Z. We 
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Table V. The Expected Values o f  the Euler-Poincar~ Characteristic 

1/4 1/4 1/4 4.621 5.068 4.675 4.165 
1/3 --1.150 -0 .913  -0 .117  --0.130 
2/5 4.815 6.580 0.431 0.318 

1/3 1/4 2.120 3.456 1.173 0.726 
1/3 1.675 2.344 - 0.607 --0.681 
2/5 5.555 6.616 --0.814 --0.776 

2/5 1/4 1.970 2.582 1.904 1.592 
1/3 1.740 2.307 0.246 0.244 

1/3 1/4 1/4 5.145 5.160 5.072 4.017 
1/3 2.730 4.135 -- 0.878 - 1.007 
2/5 4.835 9.078 -- 2.398 -- 2.363 

1/3 1/4 2.290 3.163 0.005 --0.010 
1/3 3.755 5.923 - 1.034 - 1.029 

2/5 I/4 1.935 2.175 --0.760 -0 .895  
2/5 1/4 1/4 2.140 2.539 1.655 1.235 

1/3 --0.670 -0 .165  -5 .549  --6.153 
1/3 I/4 2.550 3.049 - 3 . 5 5 2  - 4 . 1 3 4  

can get the d imens ion  as v ~ oo in a simple numer ica l  manner .  We  have to 
i > I f  we let 2 grow as v r wi th  find tha t  value o f  d for which #d > ~V -- #d+ 1- 

1 --< y < 2, we get the results shown in Table  VI. 
We see tha t  d imens ion  d = 1 dominates ;  in fact, y has to be at  least  1.4 

in o rder  to get a higher  d imension ,  bu t  then we see tha t  we can  have very 
high d imensional i t ies  in some special ex t reme cases. The  average o f  the 

Table VI. Asymptotic Values for the Dimension Found by Numerical Methods a 

y v = 100 v = 500 v = 1000 v = 5000 v = 10,000 

1 .0  1 1 I 1 1 

1.1 1 1 1 1 I 

1.2 1 1 1 1 1 
1.3 1 1 1 1 1 
1.4 1 1 1 2 2 
1.5 1 1 2 3 3 
1.6 1 3 3 4 4 
1.7 1 5 5 6 6 
1.8 13 11 11 10 10 
1.9  - -  - -  - -  54 45 

aA dash indicates that  no solution was found. The numbers  were found by demanding that #d 
was of the same order of  magni tude as �89 
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numbers in the last column is 74/10 = 7.4, which is very high. Obviously 
this high number is due to the very last entry, namely 45; if this is ignored, 
we get an average of  29/9 ~ 3.2. We see that the dimensionality tends to be 
about 3 (we can raise it a bit by ignoring the other extremes ~ = 1, 1.1) 
when the graph becomes very large. But we should keep in mind that the 
statistical estimate/~d has a tendency to be lower than the actual number of 
d-cells (aa) so we would get a dimensionality slightly higher than this 
value of  3, but probably not too much higher. A conservative guess would 
be an average dimensionality of  less than 5, i.e., either 3 or 4. 

A bound on the Euler-Poincar6 characteristic Z~ can also be found. 
Note that for v >> d we have 

d +  1 ( d +  1)! 

so f o r 2 ~ v  ~ w e g e t  

'~ E (--1) d2d(d+l)/2VO'-2)d(d+l)/2 1 
d= 0 (d + 1)! 

<. ~ 2d(d+ DJ2F(~,- 2)d(d+ 1)/2 1 

a=o" ( d +  1)! 

Using Stirling's formula, we get 

1 < 2 Z expF_d( d 
Iz.I- (2rc),/z d= 0 L2 

- ( d  + ~) log(d  + 1) 

1 
+ 1) log 2 + ~ (y - 2)d(d 

- ( d +  1)] 

+ 1) log v 

Keeping only the terms involving log v, we obtain a sum which we can 
approximate by a standard integral, i.e., 

l - - - ~ ( 2 - - 7 )  log (X2 "3i- X) dx [X~ [ < (2rc)1/2 exp v 

= 2[.(2_ ~ log v]l/2exp(~-~-Y-log v)erfc((~--~ log v) 1/2) (17) 

where erfc(x) is the complementary error function. 
We can get lower and upper bounds on the diameter as follows. 

Assume that the graph has effective dimension deer = d. A d-cube consists of  
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2 a points and we thus have a volume of at most v/2 a = 2- '%.  This gives a 
radius of  at most 

1 v~/a Rmax~  (18) 

A lower bound can be obtained by considering the number of  d-simplices 
#a- The d-volume is then simply ~/~a, since each simplex has volume of 
one-half. So we have 

~ 2(a+ ~)/2v(~ - 2/(a+ ~)/2(d + 1) -(a+ 3/2)/a exp d 

~ 2(a+ o/2v(~ - 2)(a+ o/2(d -t- 1) - l e  - l (19) 

where we have used Stirling's formula, put 2 = v ~, and approximated d + 1 
by d, etc. For an effective dimension of three we thus get 

1,,1/3 > R > vz(7-2)e-1 (20) 

4. A MASTER E Q U A T I O N  AND Q U A N T U M  T H E O R Y  

This is a rather speculative section, but the essential idea is to find a 
master equation governing the evolution of the graphs. Our rules were 
stochastic; this is actually as it should be: the most general model would 
have to be indeterministic, as determinism is just a special case of  indeter- 
minism. Note also that our rules give time an arrow; since the deletion of 
a point implies the deletion of all its links, our processes are not directly 
reversible. We can always get from one graph G~ to another G2, but it 
might be easier to get from the one to the other than vice versa. The rules 
for evolution have a further implication: our system is described by a 
Markov chain, since we can write 

where {]~n )} is some evolution and where ~n is one of the four basic 
operators. Only the immediate past matters, so we have a Markov chain. 
Now, this is actually a very powerful assumption; it allows us to write 
down a master equation which has to be satisfied. It  can be shown 
(Gardiner,  1985), that the transition probabilities for a Markov chain with 
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continuous 
equation, 

parameters satisfies the differential Chapman-Kolmogorov 

tl ', , ' ) - -  % ,')1 

+ ~ [w(x ly, t)P(y, t lx', c) 

- w(ylx, t)P(x, tlx't')] dy 

where ai, bij, w are some functions. This equation contains the Fokker-  
Planck and the Liouville equations as special cases among others. We will 
assume that this equation can be taken over into our discrete setup, by 
substituting the derivatives with respect to xg by variations with respect to 
A~j. Furthermore, since the transition probability P only depends implicitly 
on time (via the dependence on the topological matrix A~j) 

(~ ~Aij 5 3 
- = ~z a -  ( 2 1 )  

~t 3t 6A• 5A e 

The equation can then be written as 

where 

0 = ~ P ( A  IA0) (22) 

3 6 
=- 6Ai~. G i j ; k , ~  + V(A) + W(A) (23) 

where G,-j;kt and V are some functions and W is an integral operator, 

W(A)~(A) =- f w(A [B)~(B) dB (24) 

This equation opens up a lot o f  possibilities, but let us for now restrict our 
attention to its form. When we note that the topological matrix Aij is 
related to the metric d,v. of the graph in a simple way, 

dij = min{k[(A~)ij # 0} 

we see that we can reexpress the above master equation as an equation with 
variations with respect to the metric. One could hope that this, when 
carried to the continuum limit, would give us some sort of Wheeler- 
DeWitt equation, suggesting that one could [in the spirit of random 
dynamics (Froggat and Nielsen, 1991; Nielsen, 1984)] "derive" full-fledged 
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quantum gravity from a simple pregeometric model. This goes beyond the 
scope of this paper; more details can be found in Antonsen ( 1992b, n.d.-b). 
In these references one can also find a more detailed study of  various other 
kinds of pregeometry and how they are related to this model. Now, any 
physical theory has an intrinsic logical structure (for classical physics the 
subsets of phase space form a Boolean algebra, whereas for quantum 
physics the closed subspaces form what is known as a quantum logic). Our 
model gives rise to "intuitionistic logic," which can be seen as a generaliza- 
tion of  quantum logics as well as classical (i.e., Boolean) logics. This is not 
the right place to go into a discussion of  this point; instead I refer to 
Antonsen (1992b, n.d.-a). 

5. DISCUSSION AND CONCLUSION 

We were led by simple arguments about physics in general to intro- 
duce a simple model for pregeometry. This model was based on an 
extremely general mathematical concept, namely that of a graph [even 
highly abstract concepts such as a category can be defined as a (directed) 
graph]. We defined dynamics and some computer simulations indicated 
that we should expect a spatial dimensionality of  about 3. The asymptotic 
behavior of important quantities was studied analytically, and we wrote 
down a master equation governing the evolution of  graphs according to the 
model; this equation had the same form as the Wheeler-DeWitt  equation. 

We noticed that matrix models could be considered as special cases of 
our own model, which is moreover not restricted to two dimensions. 
Furthermore, it can be argued that a number of  other, perhaps less 
well-known models of  quantum gravity, such as the topological ideas of 
Isham, Alvarez, Bombelli, and others, the logic/computing-oriented ideas 
of 't Hooft,  Zapatrin, and Finkelstein, and simplicial gravity models, could 
all be incorporated as special cases of our own model. 
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